Анализируются временные ряды для построения прогнозируемых значений с помощью теории цепей Маркова. Главная задача — нахождение оценок переходных вероятностей марковской цепи на основании наблюдаемых данных временного ряда. Доказывается, что нахождение таких вероятностей, отвечающих всем требованиям, сводится к задаче квадратичного программирования на симплексе. Строятся состоятельные и несмещенные оценки переходных вероятностей с использованием решения задачи квадратичного программирования в среде МАТLAB. Полученные оценки проверены экспериментально методом Монте-Карло.
Time series forecasting by using the theory of Markov’s chains are considered. The main task was to find the transition probabilities for Markov’s chain on the basis of observed values of the time series. It is shown that to find the transition probabilities which meet all the necessary requirements, one should use the quadratic programming on simplex. Consistent and unbiased estimations of the transition probabilities are built via the solution of the quadratic programming problem in MATLAB.
Аналізуються часові ряди для побудови значень, які прогнозуються, за допомогою теорії ланцюгів Маркова. Головна задача — знаходження оцінок перехідних ймовірностей марковського ланцюга на основі даних часового ряду, що спостерігаються. Доводиться, що знаходження таких ймовірностей, які відповідають усім вимогам, зводиться до задачі квадратичного програмування на симплексі. Будуються обґрунтовані та незміщені оцінки перехідних ймовірностей із використанням рішення задачі квадратичного програмування у середовищі MATLAB.