Наукова електронна бібліотека
періодичних видань НАН України

Перегляд Журнал математической физики, анализа, геометрии, 2018, № 3 за назвою

Репозиторій DSpace/Manakin

Перегляд Журнал математической физики, анализа, геометрии, 2018, № 3 за назвою

Сортувати за: Порядок: Результатів:

  • Kotani, Shinichi (Журнал математической физики, анализа, геометрии, 2018)
    Sato introduced the τ-function to describe solutions to a wide class of completely integrable differential equations. Later Segal–Wilson represented it in terms of the relevant integral operators on Hardy space of the unit ...
  • Exner, Pavel; Khrabustovskyi, Andrii (Журнал математической физики, анализа, геометрии, 2018)
    We consider a family {Hε}ε>0 of εZⁿ-periodic Schrödinger operators with δ′-interactions supported on a lattice of closed compact surfaces; within a minimum period cell one has m ∊ N surfaces. We show that in the limit ...
  • Aktosun, Tuncay; Weder, Ricardo (Журнал математической физики, анализа, геометрии, 2018)
    The matrix Schrödinger equation is considered on the half line with the general selfadjoint boundary condition at the origin described by two boundary matrices satisfying certain appropriate conditions. It is assumed that ...
  • Pastur, L.; Shcherbina, M. (Журнал математической физики, анализа, геометрии, 2018)
    The paper is a continuation of work [15] in which the general setting for analogs of the Szegö theorem for ergodic operators was given and several interesting cases were considered. Here we extend the results of [15] to a ...
  • König, Hermann; Milman, Vitali (Журнал математической физики, анализа, геометрии, 2018)
    We solve the extended Leibniz rule T(f•g)=Tf•Ag+Af•Tg for operators T and A in the space of rapidly decreasing functions in both cases of complex and real-valued functions.
  • Gorin, Vadim; Sodin, Sasha (Журнал математической физики, анализа, геометрии, 2018)
    The logarithm of the diagonal matrix element of a high power of a random matrix converges to the Cole–Hopf solution of the Kardar–Parisi–Zhang equation in the sense of one-point distributions.

Пошук


Розширений пошук

Перегляд

Мій обліковий запис