Closed and non-closed (with planar edges) strictly convex surfaces with continuous curvatures are considered. Upper and lower bounds are obtained for the Gaussian curvature under various restrictions imposed on integral parameters of a surface: the diameter and width of the surface, the volume of the enclosed body, the maximum area of planar cross-sections of the enclosed body, the radius of a circumscribed or inscribed ball, the height of non-closed surface and the area enclosed by the planar boundary of the surface.
Розглядаються як замкненi, так i незамкненi з плоским краєм строго опуклi поверхнi з неперервною кривиною. Одержано оцiнки зверху та знизу для гаусової кривини в залежностi вiд заданих обмежень на деякi iнтегральнi параметри поверхнi, такi як: дiаметр або ширина поверхнi, об’єм тiла, яке обмежує поверхня, максимальна площа “поперечного” перерiзу тiла, радiус описаного чи вписаного шару, висота незамкненої поверхнi та площа областi, яку обмежує плоский край поверхнi.