Исследуется и анализируется реальное множество больших по объему медико-статистических данных, используемых для распознавания действий медицинских работников на основе показателей акселерометров в определенный момент времени. В процессе распознавания применена глубинная сеть убеждений на неразмеченных данных, после чего проведено обучение с учителем методом обратного распространения ошибки. Полученные результаты показали более высокую точность распознавания по сравнению с базовыми методами. Достигнуто также значительное улучшение относительно продолжительности действий медперсонала.
Досліджується та аналізується реальна множина великих за обсягом медико-статистичних даних, що використовуються для розпізнавання дій медичних працівників на основі показників акселерометрів у визначений момент часу. У процесі розпізнавання застосовано глибинну мережу переконань на нерозмічених даних, після чого проведено навчання з учителем методом зворотного поширення помилки. Отримані результати показали більш високу точність розпізнавання у порівнянні з базовими методами. Досягнуто також значне покращення відносно тривалості дій медперсоналу.
The paper analyzes the real set of large-volume medical and statistical data to be used for recognition of actions of medical workers on the basis of readings of accelerometers at a particular moment of time. During the recognition, deep belief network is applied on unlabeled data, and then trained with supervised learning by backward propagation of errors. The obtained results show a higher recognition accuracy as compared with the basic methods A significant improvement is achieved as to the duration of actions of medical staff.