Получены уравнения движения для задачи о движении трех взаимно притягивающихся тел, одно из которых – жидкий эллипсоид переменной вязкости, совершающий однородное вихревое движение, а два других – твердые однородные шары. Закон изменения стратифицированной вязкости выбран так, чтобы обеспечить однородное вихревое движение жидкости. В качестве примера с помощью метода Рунге–Кутта сделан расчет движения для задачи с массово-геометрическими параметрами системы Земля–Луна–Солнце.
The problem of three gravitating bodies, one of which is a liquid ellipsoid and two others are rigid homogeneous spheres, is the subject of investigation in the paper. The motion of the liquid ellipsoid is assumed to be the homogeneous vortex flow, and this liquid has a special stratified distribution of viscosity that makes possible such motion. The equations of motion of this system are obtained, and they are solved for example by Runge–Kutta method for the case of the system with mass–geometric parameters of the Earth–Moon–Sun system.