Проведена классификация равновесных состояний сверхтекучих жидкостей со скалярным и тензорным параметрами порядка на основе концепции квазисредних. Дано обобщение условия ненарушенной симметрии на неоднородные равновесные состояния. Найдены допустимые условия пространственной симметрии в терминах интегралов движения. Установлена связь этих условий симметрии с геликоидальной структурой векторов спиновой и пространственной анизотропии. При некоторых ограничениях показано, что равновесная структура параметра порядка может быть представлена в виде произведения однородной и зависящей от пространственных координат неоднородной части параметра порядка.
A classification of the equilibrium states of superfluid liquids with scalar and tensor order parameters, based on the concept of quasi-averages, is presented. The condition of unbroken symmetry is generalized to inhomogeneous equilibrium states. The admissible conditions of spatial symmetry are found in terms of integrals of the motion. A connection between these symmetry conditions and the helicoidal structure of the spin and spatial anisotropy vectors is established. Under certain restrictions it is shown that the equilibrium structure of the order parameter can be represented as a product of a homogeneous part of the order parameter and a part that depends on the spatial coordinates.