Розглянуто нескінченні системи стохастичних диференціальних рівнянь, що описують
рух взаємодіючих частинок у випадковому середовищі. Доведено теореми існування та
єдиності розв'язків. Також доведено граничну теорему для відповідних мірозначних процесів у випадку, коли маса кожної частинки прямує до нуля, а густота частинок зростає до нескінченності.
Рассмотрены бесконечные системы стохастических дифференциальных уравнений, описывающие движение взаимодействующих частиц в случайной среде. Доказаны теоремы существования и единственности решений. Также доказана предельная теорема для соответствующих мерозначных процессов в случае, когда масса каждой частицы стремится к нулю, а плотность частиц возрастает к бесконечности.
We consider infinite systems of stochastic differential equations that describe the motion of interacting
particles in a random environment. Theorems on existence and uniqueness of the solution are
proved. We also obtain a limit theorem for corresponding measure-valued processes in the case where
the mass of each particle tends to zero, and the density of particles grows to infinity.