Доказана теорема, улучшающая ранее известную верхнюю границу для относительного расстояния между булевой функцией от n пременных и множеством k-мерных функций, k < n. Доказательство базируется на применении неравенства Бонами Бекнера.
Доведено теорему, яка покращує раніше відому верхню межу для відносної відстані між булевою функцією n змінних та множиною k-вимірних функцій, k < n . Доведення базується на використанні нерівності Бонамі–Бекнера.
A theorem that improves a previously known upper bound for the relative distance between a Boolean function of n variables and the set of k-dimensional functions, k < n, is proved. The proof is based on the Bonami–Beckner inequality.