Предложен способ построения непрерывных кусочно-полиномиальных весовых функций для метода Петрова Галёркина в трехмерной области. Вид и форма функций определяется конечным числом варьируемых параметров, связанных с ребрами сетки разбиения. С помощью выбора этих параметров можно получать численные аппроксимации для исходной задачи, в которых будут отсутствовать нефизические осцилляции при сохранении приемлемой точности решения. Результаты исследования проиллюстрированы численными примерами.
Запропоновано спосіб побудови неперервних кусково-поліноміальних вагових функцій для методу Петрова Гальоркіна в тривимірній області. Вид та форма функцій визначені скінченною кількістю параметрів, що пов'язані з ребрами сітки розбиття і якими можна варіювати. Вибором цих параметрів можна отримати чисельні апроксимації для вихідної задачі, в якій відсутні нефізичні осциляції (при збереженні достатньої точності). Результати дослідження проілюстровано декількома чисельними прикладами
We propose a method for constructing a continuous piecewise-polynomial weight functions for the Petrov–Galerkin method in three-dimensional domain. The form of the functions is determined by a finite number of variable parameters associated with the edges of the grid partition. It is expected that the choice of these parameters allows obtaining the numerical approximation of the original equation without non-physical oscillations (when saving the sufficient accuracy). The investigation results are illustrated with some test calculations.