Предложены новые алгоритмы для решения системы операторных включений с монотонными операторами, действующими в гильбертовом пространстве. Алгоритмы основаны на трех известных методах: алгоритме расщепления Ценга и двух гибридных алгоритмах для аппроксимации неподвижных точек нерастягивающих операторов. Доказаны теоремы о сильной сходимости порожденных алгоритмами последовательностей.
Запропоновано нові алгоритми для розв'язання системи операторних включень з монотонними операторами, що діють в гільбертовому просторі. Алгоритми базуються на трьох відомих методах: алгоритмі розщеплення Ценга та двох гібридних алгоритмах для апроксимації нерухомих точок нерозтягуючих операторів. Доведено теореми про сильну збіжність породжених алгоритмами послідовностей.
New algorithms are proposed to solve a system of operator inclusions with monotone operators acting in a Hilbert space. The algorithms are based on three well-known methods: the Tseng forward-backward splitting algorithm and two hybrid algorithms for approximation of fixed points of nonexpansive operators. Theorems on the strong convergence of the sequences generated by the algorithms are proved.