Анотація:
Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are Painlev´e equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁² at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set.