Представлена трехмерная математическая модель нестационарного температурного поля непрерывнолитой заготовки и стенок кристаллизатора. Модель учитывает зависимости теплофизических параметров от температуры, наличие зазора между поверхностью слитка и стенкой кристаллизатора, характер водяного охлаждения кристаллизатора, зависимость граничных условий от конфигурации и режимов работы зоны вторичного охлаждения. Положение границы раздела фаз определяется из условий Стефана. Задача численно решена методом конечных разностей. Представлены и проанализированы результаты расчетов.
Представлена тривимiрна математична модель нестацiонарного температурного поля безперервнолитої заготовки й стiнок кристалiзатора. Модель враховує залежнiсть теплофiзичних параметрiв вiд температури, наявнiсть зазору мiж поверхнiстю злитка й стiнкой кристалiзатора, характер водяного охолодження кристалiзатора, залежнiсть граничних умов вiд конфiгурацiї й режимiв роботи зони вторинного охолодження. Положення межi розподiлу фаз визначається умовами Стефана. Задачу чисельно розв’язано методом кiнцевих рiзниць. Представлено i проаналiзовано результати розрахункiв.
The three-dimensional mathematical model of nonstationary temperature field of continuous ingot and mold walls is presented. Model takes into account dependence of thermophysical parameters on the temperature, the presence of the gap between the surface of the ingot and the mold wall, the mode of mold water-cooling, the dependence of the boundary conditions on the configuration and modes of the secondary cooling system. The position of the interface is determined from the Stefan condition. The numerical solution of the problem is performed by the finite-difference method. The results of numerical solution are presented and analysed.