Анотація:
Для системы обыкновенных дифференциальных уравнений вводится понятие локальной интегрируемости вблизи ее неподвижной точки, как конечной,так и бесконечно удаленной. Для локального анализа системы вблизи ее конечной неподвижной точки предлагается вычислять ее нормальную форму[1, 2]. Бесконечно удаленную неподвижную точку предлагается переводить в конечную неподвижную точку с помощью степенного преобразования координат[ 1,2] и затем использовать приведение к нормальной форме. Этот подход применяется к частному случаю системы уравнений Эйлера-Пуассона,описывающей движения волчка.Оказалось,что у этой системы вблизи семейств конечных и бесконечно удаленных неподвижных точек есть области локальной интегрируемости.