Посилання:Electronic structure and x-ray magnetic circular dichroism in the Mn₃CuN perovskite / V.N. Antonov, L.V. Bekenov // Физика низких температур. — 2014. — Т. 40, № 7. — С. 825-834. — Бібліогр.: 66 назв. — англ.
Підтримка:This work was supported by the National Academy of
Sciences of Ukraine in the framework of the State Target
Scientific and Technology Programs "Nanotechnology and
Nanomaterials" for 2010-2014 (No. 0277092303) and Implementation
and Application of Grid Technologies for
2009-2013 (No. 0274092303).
The electronic and magnetic structures of Mn₃CuN are investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. Mn₃CuN possesses a magnetic phase transition at TC = 143 K from a high temperature paramagnetic phase to a low temperature ferromagnetic one with a noncollinear magnetic structure. The transition is accompanied by a structural change from the cubic to the tetragonal lattice. In low temperature phase two Cu moments and two Mn moments (Mn₂ and Mn₃) ferromagnetically align along the c axis while other four Mn1 magnetic moments are canted from the c axis to [111] direction by angle Q= ±76.2. The x-ray absorption spectra and x-ray magnetic circular dichroism (XMCD) spectra of Mn₃CuN are investigated theoretically from first principles. The origin of the XMCD spectra in the Mn₃CuN compound is examined. The calculated results are compared with the experimental data.