Показати простий запис статті
dc.contributor.author |
Kondratiev, Yu.G. |
|
dc.contributor.author |
Kuna, T. |
|
dc.contributor.author |
Ohlerich, N. |
|
dc.date.accessioned |
2017-06-04T17:19:27Z |
|
dc.date.available |
2017-06-04T17:19:27Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
Selection-mutation balance models with epistatic selection / Yu.G. Kondratiev, T. Kuna, N. Ohlerich // Condensed Matter Physics. — 2008. — Т. 11, № 2(54). — С. 283-291. — Бібліогр.: 7 назв. — англ. |
uk_UA |
dc.identifier.issn |
1607-324X |
|
dc.identifier.other |
PACS: 02.50.Ga |
|
dc.identifier.other |
DOI:10.5488/CMP.11.2.283 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/119142 |
|
dc.description.abstract |
We present an application of birth-and-death processes on configuration spaces to a generalized mutationselection
balance model. The model describes the aging of population as a process of accumulation of mutations
in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces.
Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which
describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states
(differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest
are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic
case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005,
35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influence
of an epistatic potential on these mutations. |
uk_UA |
dc.description.abstract |
Ми представляємо застосування процесiв народження-знищення на конфiгурацiйних просторах до узагальненої моделi селекцiйно-мутацiйного балансу. Модель описує старiння популяцiї як процес накопичення мутацiй в генотипi. В математично строгому пiдходi мутацiї вiдповiдають точкам у абстрактному просторi. Наша модель описує нескiнчено-популяцiйну модель з безмежною кiлькiстю точок у континуумi. Динамiчне рiвняння, що описує систему, є типу Кiмури-Маруями. Проблема може бути поставлена в термiнах еволюцiї станiв (диференцiальнi рiвняння) або, що є еквiвалентно, за допомогою формули Фейнмана-Каца. Дослiджується питання iснування розв’язку, його асимптотичної поведiнки, властивостi граничного стану. У неепiстатичному випадку проблема була поставлена i розв’язана у [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. В нашiй моделi ми розглядаємо топологiчний простiр X як простiр позицiй мутацiй та вплив на епiстатичний потенцiал. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут фізики конденсованих систем НАН України |
uk_UA |
dc.relation.ispartof |
Condensed Matter Physics |
|
dc.title |
Selection-mutation balance models with epistatic selection |
uk_UA |
dc.title.alternative |
Моделi селекцiйно-мутацiйного балансу з епiстатичною селекцiєю |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті