Розглянуто відновлення причин (діагнозів) за спостережуваними наслідками (симптомами) на основі багатовимірних нечітких відношень і розширеного композиційного правила виведення. Проектування нечіткої системи діагностики полягає у розв’язанні нечітких логічних рівнянь сумісно з налаштуванням нечітких відношень на основі експертно-експериментальної інформації. Запропоновано метод розв’язання систем нечітких логічних рівнянь з розширеною max-min композицією. Доведено властивості множини розв’язків таких систем. Задачу знаходження множини розв’язків сформульовано у вигляді задачі оптимізації, для розв’язання якої використано генетико-нейронний підхід. Налаштування полягає у виборі таких функцій належності нечітких причин і наслідків, а також нечітких відношень, які мінімізують різницю між модельними і експериментальними результатами діагностики. Запропонований підхід проілюстровано комп’ютерним експериментом і прикладом технічної діагностики.
Рассмотрено восстановление причин (диагнозов) по наблюдаемым следствиям (симптомам) на основе многомерных нечетких отношений и расширенного композиционного правила выведения. Проектирование нечеткой системы диагностики состоит в решении нечетких логических уравнений совместно с настройкой нечетких отношений на основе экспертно-экспериментальной информации. Предложен метод решения систем нечетких логических уравнений с расширенной max-min композицией. Доказаны свойства множества решений таких систем. Задача нахождения множества решений сформулирована в виде задачи оптимизации, для решения которой используется генетико-нейронный подход. Настройка состоит в выборе таких функций принадлежности нечетких причин и следствий, а также нечетких отношений, которые минимизируют отличие между модельными и экспериментальными результатами диагностики. Предложенный подход проилюстрирован компьютерным экспериментом и примером технической диагностики.
This paper deals with restoration of the causes (diagnoses) through the observed effects (symptoms) on the basis of multivariable fuzzy relations and the extended compositional rule of inference. The design of a diagnostic fuzzy system consists of solving fuzzy relational equations together with tuning of fuzzy relations on the basis of information from experts and experiments. We propose a method for solving fuzzy relational equations with the extended max-min composition. We also prove the properties of the solution set for such systems. The problem of finding the solution set is formulated in the form of the optimization problem, which is solved using genetic algorithms and neural networks. The essence of tuning consists of the selection such membership functions for fuzzy causes and effects, and also fuzzy relations, which minimize the difference between model and experimental results of a diagnosis. The proposed approach is illustrated by the computer experiment and the example of a technical diagnosis.