An evolution problem on small motions of the viscous rotating relaxing fluid in a bounded domain is studied. The problem is reduced to the Cauchy problem for the first-order integro-differential equation in a Hilbert space. Using this equation, we prove a strong unique solvability theorem for the corresponding initial-boundary value problem.
Исследована эволюционная задача о малых движениях вязкой вращающейся релаксирующей жидкости в ограниченной области. Задача приведена к задаче Коши для интегро-дифференциального уравнения первого порядка в гильбертовом пространстве. С использованием этой задачи Коши доказана теорема об однозначной сильной разрешимости соответствующей начально-краевой задачи.