В приближении Буссинеска, следуя методу асимптотических многомасштабных разложений, исследуются нелинейные эффекты при распространении внутренних волн с учетом турбулентной вязкости и диффузии. В работе определяются декремент затухания волны и погранслойные решения у дна и свободной поверхности. Среднее течение, индуцированное волной, находится во втором порядке малости по крутизне волны. Получены коэффициенты нелинейного уравнения Шредингера для огибающей волнового пакета. Показано, что в длинноволновом пределе слабонелинейная плоская волна устойчива к продольной модуляции; если длина волны меньше некоторого критического значения, то волна модуляционно неустойчива.
In the Boussinesque approximation and following the method of asymptotic multi-scale expansion, non-linear effects in propagation of internal waves are studied with allowance for turbulent viscosity and diffusion. The wave attenuation decrement and boundary-layer solutions near the bottom and the free surface are defined. The wave-induced mean current is of the second order infinitesimal in the wave steepness expansion. The coefficients of the Schrödinger non-linear equation for the wavepacket envelope are obtained. It is shown that within the long-wave limit a weak-nonlinear flat wave is stable to the longitudinal modulation. If the wavelenth is smaller than a certain critical value, the wave is unstable to modulation.