Предложен метод решения минимаксной задачи размещения источников физического поля, которое описывается смешанной краевой задачей с использованием уравнения Пуассона. Функция цели — максимальное значение физического поля на конечном множестве точек области. Множество допустимых значений параметров размещения источников определяется условиями взаимного непересечения и невыхода источников за пределы области. Предложен способ вычисления частных производных решения краевой задачи по параметрам размещения.
Запропоновано метод розв’язання мінімаксної задачі розміщення джерел фізичного поля, яке описується змішаною крайовою задачею для рівняння Пуассона. Функція цілі — максимальне значення фізичного поля на скінченній множині точок області. Множина припустимих значень параметрів розміщення джерел визначається умовами взаємного неперетину та невиходу джерел за межі області. Запропоновано спосіб обчислення частинних похідних розв’язку крайової задачі за параметрами розміщення.
The paper deals with minimax placement problem of discrete physical field sources. The field distribution is described by Poisson’s equation with mixed boundary conditions. The objective function is a maximum of field on a finite point set. In the practice these points form a regular grid on a given domain. The set of admissible values of source placement parameters is defined by mutual non-overlapping and belonging of sources to the given domain. The domain and sources are supposed to be rectangles. One of the methods for solving minimax problems, which provides a local optimum and requires computation of partial derivatives with respect to source placement parameters, is used as the solution method. Since the boundary value problem is solved by the method of finite elements, the algorithm to obtain these derivatives is proposed. As a practical example we solved the placement problem for electronic devices with thermal criterion.