Розглядається проблема мiнiмiзацiї квадратичного функцiонала на розв’язках другої крайової задачi для рiвняння теплопровiдностi. Для дослiдження сформульованої задачi
оптимiзацiї застосовано метод множникiв Лагранжа. Такий пiдхiд дав можливiсть
отримати необхiднi умови оптимальностi. На основi цих умов виведено iнтегро-диференцiальне рiвняння Рiккатi з частинними похiдними. Розв’язок цього рiвняння подано в замкненiй формi.
Рассматривается проблема минимизации квадратичного функционала на решениях второй краевой задачи для уравнения теплопроводности. Для исследования сформулированной
задачи оптимизации применен метод множителей Лагранжа. Такой подход дал возможность получить необходимые условия оптимальности. На основе этих условий выведено интегро-дифференциальное уравнение Риккати с частными производными. Решение этого уравнения представлено в замкнутой форме.
The problem of minimization of a quadratic functional on solutions of the second boundary-value
problem for the heat equation is considered. The method of Lagrange multipliers is applied to
research the formulated optimization problem. Such approach has given a chance to obtain the
necessary conditions of optimality. On the basis of these conditions, the integro-differential Riccati
equation with partial derivatives is deduced. The solution of this equation is presented in the closed
form.