In the paper we consider a mixed boundary-value problem for the Poisson equation in a plane two-level
junction Ωε, which is the union of a domain Ω₀ and a large number 2N of thin rods with variable thickness
of order ε = O(N⁻¹). The thin rods are divided into two levels depending on their length. In addition,
the thin rods from each level are ε-periodically alternated. We investigate the asymptotic behaviour of the
solution as ε → 0 under the Robin conditions on the boundaries of the thin rods. By using some special
extension operators, the convergence theorem is proved.
Розглядається мiшана крайова задача для рiвняння Пуассона у плоскому дворiвневому з’єднаннi
Ωε, яке є об’єднанням деякої областi Ω₀ та великої кiлькостi 2N тонких стержнiв iз змiнною
товщиною порядку ε = O(N⁻¹) Тонкi стержнi роздiлено на два рiвнi в залежностi вiд їх довжини. Крiм того, тонкi стержнi з кожного рiвня ε-перiодично чергуються. Вивчено асимптотичну поведiнку розв’язку, коли ε → 0, при крайових умовах Робiна на межах тонких стержнiв.
Iз використанням спецiальних операторiв продовження доведено теорему збiжностi.