Доведено, що або власне відображення області n-вимірного многовиду на область іншого n-вимірного многовиду степеня k буде внутрішнім відображенням, або існує точка в образі, яка має не менше ніж |k|+2 прообрази. Якщо ж обмеження f на внутрішність області є нульвимірним відображенням, то у другому випадку множина точок образу, що мають не менше ніж |k|+2 прообрази, містить підмножину повної розмірності n.
Крім цього, побудовано приклад відображення двовимірної області, гомеоморфного на межі, нульвимірного, що має нескінченну кратність і обмеження якого на досить велику частину множини розгалуження є гомеоморфізмом.
We prove that either the proper mapping of a domain of an n-dimensional manifold onto a domain of another n-dimensional manifold of degree k is an interior mapping or there exists a point in the image that has at least |k|+2 preimages. If the restriction of f to the interior of the domain is a zero-dimensional mapping, then, in the second case, the set of points of the image that have at least |k|+2 preimages contains a subset of total dimension n. In addition, we construct an example of a mapping of a two-dimensional domain that is homeomorphic at the boundary and zero-dimensional, has infinite multiplicity, and is such that its restriction to a sufficiently large part of the branch set is a homeomorphism.