Розглядається питання розв'язності неоднорідної третьої крайової задачi в обмеженій області для скалярного неправильно еліптичного диференціального рівняння з комплексними коефіцієнтами та однорідним символом. Доведено, що класами граничних даних, для яких задача має єдиний розв'язок у просторі Соболєва над кругом, є простори функцій з експоненціальним спаданням коефіцієнтів Фур'є.
We study the problem of solvability of the inhomogeneous third boundary-value problem in a bounded domain for a scalar improperly elliptic differential equation with complex coefficients and homogeneous symbol. It is shown that this problem has a unique solution in the Sobolev space over the circle for special classes of boundary data from the spaces of functions with exponentially decreasing Fourier coefficients.