Доведено замкненість та щільну визначеність вказаного у заголовку оператора, якиіі діє в гільбертовому просторі L₂(0, ∞). Побудовано спряжений оператор. Встановлено критерії максимальної диснпатнвності і максимальної акретивності досліджуваного оператора.
We prove that a differential boundary operator of the Sturm–Liouville type on a semiaxis with two-point integral boundary conditions that acts in the Hilbert space L₂(0, ∞) is closed and densely defined. The adjoint operator is constructed. We also establish criteria for the maximal dissipativity and maximal accretivity of this operator.