Розв'язано задачу про побудову нарізно неперервних функцій на добутку двох топологічних просторів із даним звуженням. Зокрема, показано, що для довільних топологічного простору X і функції g:X→R першого класу Бера існує нарізно неперервна функція f:X×X→R така, що f(x,x)=g(x) для кожного х∈X.
We solve the problem of the construction of separately continuous functions on a product of two topological spaces with given restriction. It is shown, in particular, that, for an arbitrary topological space X and a function g: X → R of the first Baire class, there exists a separately continuous function f: X × X → R such that f(x, x) = g(x) for every x ∈ X.