Доведено, що умова гостроти Ріффела для банахового простору E є необхідною і достатньою для того, щоб довільна ліпшіцова функція f: [a, b]→E була диференційовною майже всюди на відрізку [a, b]. Встановлено, що у випадку відсутності властивості гостроти більшість (у сенсі категорії) ліпшіцових функцій не мають похідної в жодній точці відрізка [a, b].
We prove that the Rieffel sharpness condition for a Banach space E is necessary and sufficient for an arbitrary Lipschitz function f: [a, b]→E to be differentiable almost everywhere on a segment [a, b]. We establish that, in the case where the sharpness condition is not satisfied, the major part (in the category sense) of Lipschitz functions has no derivatives at any point of the segment [a, b].