Знайдено асимптотичні рівності для верхніх меж наближень сумами Фур'є та для найкращих наближень в метриках С і L1 на класах згорток періодичних функцій, що можуть бути регулярно продовжені у фіксовану смугу комплексної площини.
We establish asymptotic equalities for upper bounds of approximations by Fourier sums and for the best approximations in the metrics of C and L1 on classes of convolutions of periodic functions that can be regularly extended into a fixed strip of the complex plane.