Анотація:
For a discrete group G and a discrete G-space X, we identify the Stone-Cech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on ω, the T-points, and study interrelations between these ultrafilters and some classical ultrafilters on ω.