Algebra and Discrete Mathematics Volume **19** (2015). Number 2, pp. 254–269 © Journal "Algebra and Discrete Mathematics"

Ultrafilters on G-spaces

O. V. Petrenko, I. V. Protasov

ABSTRACT. For a discrete group G and a discrete G-space X, we identify the Stone-Čech compactifications βG and βX with the sets of all ultrafilters on G and X, and apply the natural action of βG on βX to characterize large, thick, thin, sparse and scattered subsets of X. We use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X. We show that, in contrast to the set-theoretical case, these two classes of ultrafilters are distinct. We consider also universally thin ultrafilters on ω , the T-points, and study interrelations between these ultrafilters and some classical ultrafilters on ω .

By a G-space, we mean a set X endowed with the action $G \times X \to X : (g, x) \mapsto gx$ of a group G. All G-spaces are supposed to be transitive: for any $x, y \in X$, there exists $g \in G$ such that gx = y. If X = G and the action is the group multiplication, we say that X is a regular G-space.

Several intersting and deep results in combinatorics, topological dynamics and topological algebra, functional analysis were obtained by means of ultrafilters on groups (see [5-7, 12, 27, 28]).

The goal of this paper is to systematize some recent and prove some new results concerning ultrafilters on G-spaces, and point out the key open problems.

In sections 1,2 and 3, we keep together all necessary definitions of filters, ultrafilters and the Stone-Čech compactification βX of the discrete space X. We extend the action of G on X to the action of βG on βX , characterize the minimal invariant subsets of βX , define the corona \check{X} of X and the ultracompanions of subsets of X.

²⁰¹⁰ MSC: 05D10, 22A15, 54H20.

Key words and phrases: G-space, ultrafilters, ultracompanion, G-selective ultrafilter, G-Ramsey ultrafilter, T-point, ballean, asymorphism.

In section 4, we give ultrafilter characterizations of large, thick, thin, sparse and scattered subsets of X.

In section 5, we use G-invariant partitions and colorings to define G-selective and G-Ramsey ultrafilters on X, and show that, in contrast to the set-theoretical case, these two classes are essentially different.

In section 6, we use countable group of permutations of $\omega = \{0, 1, ...\}$ to define thin ultrafilters on ω . We prove that some classical ultrafilters on ω (for example, *P*- and *Q*-points) are thin ultrafilters.

We conclude the paper, showing in section 7, how all above results can be considered and interpreted in the frames of general asymptology.

1. Filters and ultrafilters

A family \mathcal{F} of subsets of a set X is called a *filter* if $X \in \mathcal{F}, \emptyset \notin \mathcal{F}$ and

$$A, B \in \mathcal{F}, A \subseteq C \Rightarrow A \cap B \in \mathcal{F}, C \in \mathcal{F}$$

The family of all fillters on X is partially ordered by inclusion \subseteq . A filter \mathcal{U} that is maximal in this ordering is called an *ultrafilter*. Equivalentely, \mathcal{U} is ultrafilter if $A \cup B \in \mathcal{U}$ implies $A \in \mathcal{U}$ or $B \in \mathcal{U}$. This characteristic of ultrafilters plays the key role in the Ramsey Theory: to prove that, under any finite partition of X, at least one cell of the partition has a given property, it suffices to construct an ultrafilter \mathcal{U} such that each member of \mathcal{U} has this property.

An ultrafilter \mathcal{U} is called *principal* if $\{x\} \in \mathcal{U}$ for some $x \in X$. Nonprincipal ultrafilters are called *free* and the set of all free ultrafilters on X is denoted by X^* .

We endow a set X with the discrete topology. The Stone-Čech compactification βX of X is a compact Hausdorff space such that X is a subspace of βX and any mapping $f : X \to Y$ to a compact Hausdorff space Y can be extended to the continuous mapping $f^{\beta} : \beta X \to Y$. To work with βX , we take the points of βX to be the ultrafilters on X, with the points of X identified with the principal ultrafilters, so $X^* = \beta X \setminus X$.

The topology of βX can be defined by stating that the sets of the form $\overline{A} = \{p \in \beta X : A \in p\}$, where A is a subset of X, are base for the open sets. For a filter φ on X, the set $\overline{\varphi} = \{\overline{A} : A \in \varphi\}$ is closed in βX , and each non-empty closed subset of βX is of the form $\overline{\varphi}$ for an appropriate filter φ on X.

2. The action of βG on βX

Given a G-space X, we endow G and X with the discrete topologies and use the universal property of the Stone-Čech compactification to define the action of βG on βX .

Given $g \in G$, the mapping $x \mapsto gx : X \to \beta X$ extends to the continuous mapping

$$p \mapsto gp : \beta X \to \beta X.$$

We note that $gp = \{gP : P \in p\}$, where $gP = \{gx : x \in P\}$.

Then, for each $p \in \beta X$, we extend the mapping $g \mapsto gp : G \to \beta X$ to the continuous mapping

$$q \mapsto qp : \beta G \to \beta X.$$

Let $q \in \beta G$ and $p \in \beta X$. To describe a base for the ultrafilter $qp \in \beta X$, we take any element $Q \in q$ and, for every $g \in Q$, choose some element $P_g \in p$. Then $\bigcup_{g \in Q} gP_g \in qp$ and the family of subsets of this form is a base for qp.

By the construction, for every $g \in G$, the mapping $p \mapsto gp : \beta X \to \beta X$ is continuous and, for every $p \in \beta X$, the mapping $q \mapsto qp : \beta G \to \beta X$ is continuous. In the case of the regular *G*-space *X*, X = G, we get well known (see [7]) extention of multiplication from *G* to βG making βG a compact right topological semigroup. For plenty applications of the semigroup βG to combinatorics and topological algebra see [6,7,12,28]. It should be marked that, for any $q, r \in \beta G$, and $p \in \beta X$, we have (qr)p = q(rp) so semigroup βG acts on βX .

Now we define the main technical tool for study of subsets of X by means of ultrafilters.

Given a subset A of X and an ultrafilter $p \in \beta X$ we define the *p*-companion of A by

$$A_p = \{\overline{A} \cap Gp\} = \{gp : g \in G, A \in gp\}.$$

Systematically, *p*-companions will be used in section 4. Here we demonstrate only one appication of *p*-companion to characterize minimal invariant subsets of βX . A closed subset *S* of βX is called *invariant* if $g \in G$ and $p \in S$ imply $gp \in S$. Clearly, *S* is invariant if and only if $(\beta G)p \subseteq S$ for each $p \in S$. Every invariant subset *S* of βX contains minimal by inclusion invariant subset. A subset *M* is minimal invariant if and only if $M = (\beta G)p$ for each $p \in S$. In the case of the regular *G*-space, the minimal invariant subsets coincide with minimal left ideals of βG so the following theorem generalizes Theorem 4.39 from [7]. **Theorem 2.1.** Let X be a G-space and let $p \in \beta X$. Then $(\beta G)p$ is minimal invariant if and only if, for every $A \in p$, there exists a finite subset F of G such that $G = FA_p$.

Proof. We suppose that $(\beta G)p$ is a minimal invariant subset and take an arbitrary $r \in \beta G$. Since $(\beta G)rp = (\beta G)p$ and $p \in (\beta G)p$, there exists $q_r \in \beta G$ such that $q_r rp = p$. Since $A \in q_r rp$, there exists $x_r \in G$ such that $A \in x_r rp$ so $x_r^{-1}A \in rp$. Then we choose $B_r \in r$ such that $\overline{x_r^{-1}A} \supseteq \overline{B_r}p$ and consider the open cover $\{\overline{B_r} : r \in \beta G\}$ of βG . By compactness of βG , there is its finite subcover $\{\overline{B_{r_1}}, \ldots, \overline{B_{r_n}}\}$, so $G = B_{r_1} \cup \ldots \cup B_{r_n}$. We put $F^{-1} = \{x_{r_1}, \ldots, x_{r_n}\}$. Then $G = (FA)_p$ and it suffices to observe that $(FA)_p = FA_p$.

To prove the converse statement, we suppose on the contrary that $(\beta G)p$ is not minimal and choose $r \in \beta G$ such that $p \notin (\beta G)rp$. Since $(\beta G)rp$ is closed in βX , there exists $A \in p$ such that $\overline{A} \cap (\beta G)rp = \emptyset$. It follows that $A \notin qrp$ for every $q \in \beta G$. Hence, $G \setminus A \in qrp$ for each $q \in \beta G$ and, in particular, $x(G \setminus A) \in rp$ for each $x \in G$. By the assumption, $gA_p \in r$ for some $g \in G$ so $A \in g^{-1}rp$, $gA \in rp$ and we get a contradiction. \Box

3. Dynamical equivalences and coronas

For an infinite discrete G-space, we define two basic equivalences on the space X^* of all free ultrafilter on X.

Given any $r, q \in X^*$, we say that r, q are *parallel* (and write $r \parallel q$) if there exists $g \in G$ such that q = gr. We denote by ~ the minimal (by inclusion) closed in $X^* \times X^*$ equivalences on X^* such that $\parallel \subseteq \sim$. The quotient X^* / \sim is a compact Hausdorff space. It is called the corona of X and is denoted by \check{X} .

For every $p \in X^*$, we denote by \check{p} the class of the equivalence \sim containing p, and say that $p, q \in X^*$ are corona equivalent if $\check{p} = \check{q}$. To detect whether two ultrafilters $p, q \in X^*$ are corona equivalent, we use G-slowly oscillating functions on X.

A function $h: X \to [0, 1]$ is called *G*-slowly oscillating if, for any $\varepsilon > 0$ and finite subset $K \subset G$, there exists a finite subset F of X such that

$$diam \ h(Kx) < \varepsilon,$$

for each $x \in X \setminus F$, where diam $h(Kx) = \sup\{|h(y) - h(z)| : y, z \in Kx\}$.

Theorem 3.1. Let $q, r \in X^*$. Then $\check{q} = \check{r}$ if and only if $h^{\beta}(r) = h^{\beta}(q)$ for every G-slowly oscillating function $h: X \to [0, 1]$.

For more detailed information on dynamical equivalences and topologies of coronas see [14] and [1, 13, 17, 19].

In the next section, for a subset A of X and $p \in X^*$, we use the *corona* p-companion of A

$$A_{\check{p}} = A^* \cap \check{p}.$$

4. Diversity of subsets of *G*-spaces

For a set S, we use the standard notation $[S]^{<\omega}$ for the family of all finite subsets of S.

Let X be a G-space, $x \in X, A \subseteq X, K \in [G]^{<\omega}$. We set

$$B(x,K) = Kx \cup \{x\}, B(A,K) = \bigcup_{a \in A} B(a,K),$$

and say that B(x, K) is a ball of radius K around x. For motivation of this notation, see the section 7.

Our first portion of definitions concerns the upward directed properties: $A \in \mathcal{P}$ and $A \subseteq B$ imply $B \in \mathcal{P}$.

A subset A of a G-space X is called

- large if there exists $K \in [G]^{<\omega}$ such that X = KA;
- thick if, for every $K \in [G]^{<\omega}$, there exists $a \in A$ such, that $Ka \subseteq A$;
- prethick if there exists $F \in [G]^{<\omega}$ such that FA is thick.

In the dynamical terminology [7], large and prethick subsets are known as syndedic and piecewise syndedic subsets.

Theorem 4.1. For a subset A of an infinite G-space X, the following statements hold:

- (i) A is large if and only if $A_p \neq \emptyset$ for each $p \in X^*$;
- (ii) A is thick if and only if, there exists $p \in X^*$ such that $A_p = Gp$.

Proof. (i) We suppose that A is large and choose $F \in [G]^{<\omega}$ such that X = FA. Given any $p \in X^*$, we choose $g \in F$ such that $gA \in p$. Then $A \in g^{-1}p$ and $A_p \neq \emptyset$.

To prove the converse statement, for every $p \in X^*$, we choose $g_p \in G$ such that $A \in g_p p$ so $g_p^{-1}A \in p$. We consider an open covering of X^* by the subsets $\{g_p^{-1}A^* : p \in X^*\}$ and choose its finite subcovering $g_{p_1}^{-1}A^*, \ldots, g_{p_n}^{-1}A^*$. Then the set $H = X \setminus (g_{p_1}^{-1}A^* \cup \ldots \cup g_{p_n}^{-1}A^*)$ is finite. We choose $F \in [G]^{<\omega}$ such that $H \subset FA$ and $\{g_{p_1}^{-1}, \ldots, g_{p_n}^{-1}\} \subset F$. Then X = FA so A is large.

(*ii*) We note that A is thick if and only if $X \setminus A$ is not large and apply (*i*).

Theorem 4.2. A subset A of an infinite G-space X is prethick if and only if there exists $p \in X^*$ such that $A \in p$ and $(\beta G)p$ is a minimal invariant subsets of βX .

Proof. The theorem was proved for regular *G*-spaces in [7, Theorem 4.40]. This proof can be easily adopted to the general case if we use Theorem 2.1 in place of Theorem 4.39 from [7]. \Box

Corollary 4.1. For every finite partition of a G-space X, at least one cell of the partition is prethick.

Remark 4.1. For a subset A of an infinite G-space X, we set

$$\Delta(A) = \{ g \in G : g^{-1}A \cap A \text{ is infinite} \}.$$

Let \mathcal{P} be a finite partition of X. We take $p \in X^*$ such that the set $(\beta G)p$ is minimal invariant and choose $A \in \mathcal{P}$ such that $A \in p$. By Theorem 2.1, A_p is large in G. If $g \in A_p$ then $g^{-1}A \in p$ and $A \in p$. Hence, $g^{-1}A \cap A$ is infinite, so $A_p \subseteq \Delta(A)$ and $\Delta(A)$ is large.

In fact, this statement can be essentially strengthened: there is a function $f : \mathbb{N} \to \mathbb{N}$ such that, for every *n*-partition \mathcal{P} of a *G*-space *X*, there are $A \in \mathcal{P}$ and $F \subset G$ such that $G = F\Delta(A)$ and $|F| \leq f(n)$. This is an old open problem (see the surveys [2,22] whether the above statement is true with f(n) = n).

In the second part of the section, we consider the downward directed properties $A \in \mathcal{P}, B \subseteq A$ imply $B \in P$ and present some results from [3,23] A subset A of a G-space X is called

- thin if, for every $F \in [G]^{<\omega}$, there exists $K \in [X]^{<\omega}$, such that $B_A(a,F) = \{a\}$ for each $a \in A \setminus K$, where $B_A(a,F) = B(a,F) \cap A$;
- sparse if, for every infinite subset Y of X, there exists $H \in [G]^{<\omega}$ such that, for every $F \in [G]^{<\omega}$, there is $y \in Y$ such that $B_A(y, F) \setminus B_A(y, H) = \emptyset$;
- scattered if, for every infinite subset Y of X, there exists $H \in [G]^{<\omega}$, such that, for every $F \in [G]^{<\omega}$, there is $y \in Y$ such that $B_Y(a, F) \setminus B_Y(a, H) = \emptyset$.

Theorem 4.3. For a subset A of a G-space X, the following statements hold:

- (i) A is thin if and only if $|A_p| \leq 1$ for each $p \in X^*$;
- (ii) A is sparse if and only if A_p is finite for every $p \in X^*$;

Let $(g_n)_{n\in\omega}$ be a sequence in G and let $(x_n)_{n\in\omega}$ be a sequence in X such that

- (1) $\{g_0^{\varepsilon_0} \dots g_n^{\varepsilon_n} x_n : \varepsilon_i \in \{0,1\}\} \cap \{g_0^{\varepsilon_0} \dots g_m^{\varepsilon_m} x_m : \varepsilon_i \in \{0,1\}\} = \emptyset$ for all distinct $m, n \in \omega$;
- (2) $|\{g_0^{\varepsilon_0} \dots g_n^{\varepsilon_n} x_n : \varepsilon_i \in \{0, 1\}\}| = 2^{n+1}$ for every $n \in \omega$.

We say that a subset Y of X is a *piecewise shifted* FP-set if there exist $(g_n)_{n \in \omega}$, $(x_n)_{n \in \omega}$ satisfying (1) and (2) such that

 $Y = \{g_0^{\varepsilon_0} \dots g_n^{\varepsilon_n} x_n : \varepsilon_n \in \{0, 1\}, n \in \omega\}.$

For definition of an FP-set in a group see [7].

Theorem 4.4. For a subset A of a G-space X, the following statements are equivalent:

- (i) A is scattered;
- (ii) for every infinite subset Y of A, there exists p ∈ Y* such that Y_p is finite;
- (iii) $A_p p$ is discrete in X^* for every $p \in X^*$;
- (iv) A contains no piecewise shifted FP-sets.

Theorem 4.5. Let G be a countable group and let X be a G-space. For a subset A of X, the following statements hold:

- (i) A is large if and only if $A_{\check{p}} \neq \emptyset$ for each $p \in X^*$;
- (ii) A is thick if and only if $\check{p} \subseteq A^*$ for some $p \in X^*$;
- (iii) A is thin if and only if $|A_{\check{p}}| \leq 1$ for each $p \in X^*$;
- (iv) if $A_{\check{p}}$ is finite for each $p \in X^*$ then A is sparse;
- (v) if, for every infinite subset Y of A, there is $p \in Y^*$ such that $Y_{\check{p}}$ is finite then A is scattered.

Question 4.1. Does the conversion of Theorem 4.5 (iv) hold?

Question 4.2. Does the conversion of Theorem 4.5 (v) hold?

Remark 4.2. If G is an uncountable Abelian group then the corona \hat{G} is a singleton [13]. Thus, Theorem 4.5 does not hold (with X = G) for uncountable Abelian groups.

5. Selective and Ramsey ultrafilters on *G*-spaces

We recall (see [4]) that a free ultrafilter \mathcal{U} on an infinite set X is said to be *selective* if, for any partition \mathcal{P} of X, either one cell of \mathcal{P} is a member of \mathcal{U} , or some member of \mathcal{U} meets each cell of \mathcal{P} in at most one point. Selective ultrafilters on ω are also known under the name *Ramsey ultrafilters* because \mathcal{U} is selective if and only if, for each colorings $\chi : [\omega]^2 \to \{0, 1\}$ of 2-element subsets of ω , there exists $U \in \mathcal{U}$ such that the restriction $\chi|_{[U]^2} \equiv const$.

Let G be a group, X be a G-space with the action $G \times X \to X$, $(g, x) \mapsto gx$. All G-spaces under consideration are supposed to be transitive: for any $x, y \in X$, there exists $g \in G$ such that gx = y. If G = X and gx is the product of g and x in G, X is called a *regular G-space*. A partition \mathcal{P} of a G-space X is G-invariant if $gP \in \mathcal{P}$ for all $g \in G$, $P \in \mathcal{P}$.

Let X be an infinite G-space. We say that a free ultrafilter \mathcal{U} on X is G-selective if, for any G-invariant partition \mathcal{P} of X, either some cell of \mathcal{P} is a member of \mathcal{U} , or there exists $U \in \mathcal{U}$ such that $|P \cap U| \leq 1$ for each $P \in \mathcal{P}$.

Clearly, each selective ultrafilter on X is G-selective. Selective ultrafilters on ω exist under some additional to ZFC set-theoretical assumptions (say, CH), but there are models of ZFC with no selective ultrafilters on ω .

Let X be a G-space, $x_0 \in X$. We put $St(x_0) = \{g \in G : gx_0 = x_0\}$ and identify X with the left coset space $G/St(x_0)$. If \mathcal{P} is a G-invariant partition of $X = G/S, S = St(x_0)$, we take $P_0 \in \mathcal{P}$ such that $x_0 \in P_0$, put $H = \{g \in G : gS \in P_0\}$ and note that the subgroup H completely determines $\mathcal{P}: xS$ and yS are in the same cell of \mathcal{P} if and only if $y^{-1}x \in H$. Thus, $\mathcal{P} = \{x(H/S) : x \in L\}$ where L is a set of representatives of the left cosets of G by H.

Theorem 5.1. For every infinite G-space X, there exists a G-selective ultrafilter \mathcal{U} on X in ZFC.

Proof. We take $x_0 \in X$, put $S = St(x_0)$ and identify X with G/S. We choose a maximal filter \mathcal{F} on G/S having a base consisting of subsets of the form A/S where A is a subgroup of G such that $S \subset A$ and $|A:S| = \infty$. Then we take an arbitrary ultrafilter \mathcal{U} on G/S such that $\mathcal{F} \subseteq \mathcal{U}$.

To show that \mathcal{U} is G-selective, we take an arbitrary subgroup H of G such that $S \subseteq H$ and consider a partition \mathcal{P}_H of G/S determined by H.

If $|H \cap A : S| = \infty$ for each subgroup A of G such that $A/S \in \mathcal{F}$ then, by the maximality of \mathcal{F} , we have $H/S \in \mathcal{F}$. Hence, $H/S \in \mathcal{U}$. Otherwise, there exists a subgroup A of G such that $A/S \in \mathcal{F}$ and $|H \cap A : S|$ is finite, $|H \cap A : S| = n$. We take an arbitrary $g \in G$ and denote $T_g = gH \cap A$. If $a \in T_g$ then $a^{-1}T_g \subseteq A$ and $a^{-1}T_g \subseteq H$. Hence, $a^{-1}T_g/S \subseteq A \cap H/S$ so $|T_g/S| \leq n$. If x and y determine the same coset by H, then they determine the same set T_g . Then we choose $U \in \mathcal{U}$ such that $|U \cap x(H \cap A/S)| \leq 1$ for each $x \in G$. Thus, $|U \cap P| \leq 1$ for each cell P of the partition \mathcal{P}_H .

The next theorem characterizes all G-spaces X such that each free ultrafilter on X is G-selective.

Theorem 5.2. Let G be a group, S be a subgroup of G such that $|G : S| = \infty$, X = G/S. Each free ultrafilter on X is G-selective if and only if, for each subgroup T of G such that $S \subset T \subset G$, either |T : S| is finite or |G : T| is finite.

Applying Theorem 2, we conclude that each free ultrafilter on an infinite Abelian group G (as a regular G-space) is selective if and only if $G = \mathbb{Z} \oplus F$ or $G = \mathbb{Z}_{p^{\infty}} \times F$, where F is finite, $\mathbb{Z}_{p^{\infty}}$ is the Prüffer p-group. In particular, each free ultrafilter on \mathbb{Z} is \mathbb{Z} -selective.

For a *G*-space *X* and $n \ge 2$, a coloring $\chi : [X]^n \to \{0,1\}$ is said to be *G*-invariant if, for any $\{x_1, \ldots, x_n\} \in [X]^n$ and $g \in G$, $\chi(\{x_1, \ldots, x_n\}) = \chi(\{gx_1, \ldots, gx_n\})$. We say that a free ultrafilter \mathcal{U} on *X* is (G, n)-Ramsey if, for every *G*-invariant coloring $\chi : [X]^n \to \{0,1\}$, there exists $U \in \mathcal{U}$ such that $\chi|_{[U]^n} \equiv const$. In the case n = 2, we write "*G*-Ramsey" instead of (G, 2)-Ramsey.

Theorem 5.3. For any G-space X, each G-Ramsey ultrafilter on X is G-selective.

The following three theorems show that the conversion of Theorem 5.3 is very far from truth. Let G be a discrete group, βG is the Stone-Čech compactification of G as a left topological semigroup, $K(\beta G)$ is the minimal ideal of βG .

Theorem 5.4. Each ultrafilter from the closure cl $K(\beta\mathbb{Z})$ is not \mathbb{Z} -Ramsey.

A free ultrafilter \mathcal{U} on an Abelian group G is said to be a *Schur* ultrafilter if, for any $U \in \mathcal{U}$, there are distinct $x, y \in U$ such that $x + y \in U$.

Theorem 5.5. Each Schur ultrafilter \mathcal{U} on \mathbb{Z} is not \mathbb{Z} -Ramsey.

A free ultrafilter \mathcal{U} on \mathbb{Z} is called *prime* if \mathcal{U} cannot be represented as a sum of two free ultrafilters.

Theorem 5.6. Every \mathbb{Z} -Ramsey ultrafilter on \mathbb{Z} is prime.

Question 5.1. Is each \mathbb{Z} -Ramsey ultrafilter on \mathbb{Z} selective?

Some partial positive answers to this question are in the following two theorems.

Theorem 5.7. Assume that a free ultrafilter \mathcal{U} on \mathbb{Z} has a member A such that $|g + A \cap A| \leq 1$ for each $g \in \mathbb{Z} \setminus \{0\}$. If \mathcal{U} is \mathbb{Z} -Ramsey then \mathcal{U} is selective.

Theorem 5.8. Every $(\mathbb{Z}, 4)$ -Ramsey ultrafilter on \mathbb{Z} is selective.

All above results are from [9].

Remark 5.1. Let G be an Abelian group. A coloring $\chi : [G]^2 \to \{0, 1\}$ is called a PS-*coloring* if $\chi(\{a, b\}) = \chi(\{a - g, b + g\})$ for all $\{a, b\} \in [G]^2$, equivalently, a + b = c + d implies $\chi(\{a, b\}) = \chi(\{c, d\})$. A free ultrafilter \mathcal{U} on G is called a *PS-ultrafilter* if, for any PS-coloring χ of $[G]^2$, there is $U \in \mathcal{U}$ such that $\chi|_{[U]^2} \equiv const$. The following statements were proved in [18], see also [6, Chapter 10].

If G has no elements of order 2 then each PS-ultrafilter on G is selective. A strongly summable ultrafilter on the countable Boolean group \mathbb{B} is a PS-ultrafilter but not selective. If there exists a PS-ultrafilter on some countable Abelian group then there is a P-point in ω^* .

Clearly, an ultrafilter \mathcal{U} on \mathbb{B} is a PS-ultrafilter if and only if \mathcal{U} is \mathbb{B} -Ramsey. Thus, a \mathbb{B} -Ramsey ultrafilter needs not to be selective, but such an ultrafilter cannot be constructed in ZFC with no additional assumptions.

6. Thin ultrafilters

A free ultrafilter \mathcal{U} on ω is said to be

- *P*-point if, for any partition \mathcal{P} of ω , either $A \in \mathcal{U}$ for some cell A of \mathcal{P} or there exists $U \in \mathcal{U}$ such that $U \cap A$ is finite for each $A \in \mathcal{P}$;
- *Q-point* if, for any partition \mathcal{P} of ω into finite subsets, there exists $U \in \mathcal{U}$ such that $|U \cap A| \leq 1$ for each $A \in \mathcal{P}$.

Clearly, \mathcal{U} is selective if and only if \mathcal{U} is a *P*-point and a *Q*-point. It is well known that the existence of *P*- or *Q*-points is independent of the system of axioms ZFC.

We say that a free ultrafilter \mathcal{U} on ω is a *T*-point if, for every countable group *G* of permutations of ω , there is a thin subset $U \in \mathcal{U}$ in the *G*-space ω .

To give a combinatorical characterization of T-points (see [8,9]), we need some definitions.

A covering \mathcal{F} of a set X is called uniformly bounded if there exists $n \in \mathbb{N}$ such that $| \cup \{F \in \mathcal{F} : x \in F\} | \leq n$ for each $x \in X$.

For a metric space (X, d) and $n \in \mathbb{N}$, we denote $B_d(x, n) = \{y \in X : d(x, y) \leq n\}$. A metric *d* is called *locally finite (uniformly locally finite)* if, for every $n \in \mathbb{N}$, $B_d(x, n)$ is finite for each $x \in X$ (there exists $c(n) \in \mathbb{N}$ such that $|B_d(x, n)| \leq c(n)$ for each $x \in X$).

A subset A of (X, d) is called *d*-thin if, for every $n \in \mathbb{N}$ there exists a bounded subset B of X such that $B_d(a, n) \cap A = \{a\}$ for each $a \in A \setminus B$.

Theorem 6.1. For a free ultrafilter \mathcal{U} on ω , the following statement are equivalent:

- (i) \mathcal{U} is a *T*-point;
- (ii) for any sequence (F_n)_{n∈ω} of uniformly bounded coverings of ω, there exists U ∈ U such that, for each n ∈ ω, |F ∩ U| ≤ 1 for all but finitely many F ∈ F_n;
- (iii) for each uniformly locally finite metric d on ω , there is a d-thin member $U \in \mathcal{U}$.

We do not know if a sequence of coverings in (ii) can be replaced to a sequence of partitions.

Remark 6.1. By [10, Theorem 3], a free ultrafilter \mathcal{U} on ω in selective if and only if, for every metric d on ω , there is a d-thin member of \mathcal{U} .

Remark 6.2. By [10, Theorem 8], a free ultrafilter \mathcal{U} on ω is a Q-point if and only if, for every locally finite metric d on ω , there is a d-thin member of \mathcal{U} .

Remark 6.3. It is worth to be mentioned the following metric characterization of *P*-points: a free ultrafilter \mathcal{U} on ω is a *P*-point if and only if, for every metric *d* on ω , either some member of \mathcal{U} is bounded or there is $U \in \mathcal{U}$ such that (U, d) is locally finite. A free ultrafilter \mathcal{U} on ω is said to be a *weak P*-*point* (a *NWD*-*point*) if \mathcal{U} is not a limit point of a countable subset in ω^* (for every injective mapping $f: \omega \to \mathbb{R}$, there is $U \in \mathcal{U}$ such that f(U) is nowhere dense in \mathbb{R}). We note that a weak *P*-point exists in ZFC.

In the next theorem, we summarize the main results from [8].

Theorem 6.2. Every *P*-point and every *Q*-point is a *T*-point. Under CH, there exists a *T*-point which is neither *P*-point, nor NWD-point, nor *Q*-point. For every ultrafilter \mathcal{V} on ω , there exist a *T*-point \mathcal{U} and a mapping $f: \omega \to \omega$ such that $\mathcal{V} = f^{\beta}(\mathcal{U})$.

Question 6.1. Does there exist a T-point in ZFC?

Question 6.2. Is every weak *P*-point a *T*-point?

Question 6.3. (*T. Banakh*). Let \mathcal{U} be a free ultrafilter on ω such that, for any metric d on ω , some member of \mathcal{U} is discrete in (X, d). Is \mathcal{U} a *T*-point?

A free ultrafilter \mathcal{U} on ω is called a T_{\aleph_0} -point if, for each minimal well ordering < of ω , there is a $d_{<}$ -thin member of \mathcal{U} , where $d_{<}$ is the natural metric on ω defined by <. By Theorem 6.1, each T-point is T_{\aleph_0} -point.

Question 6.4. Is every T_{\aleph_0} -point a *T*-point? Does there exist a T_{\aleph_0} -point in ZFC?

Remark 6.4. An ultrafilter \mathcal{U} on ω is called *rapid* if, for any partition $\{P_n : n \in \omega\}$ of ω into finite subsets, there exists $U \in \mathcal{U}$ such that $|U \cap P_n| \leq n$ for every $n \in \omega$. Jana Flašková (see [10, p.350]) noticed that, in contrast to Q-points, a rapid ultrafilter needs not to be a T-point.

Remark 6.5. A family \mathcal{F} of infinite subsets of ω is *coideal* if $M \subseteq N, M \in \mathcal{F} \Rightarrow N \in \mathcal{F}$ and $M = N_0 \cup N_1, M \in \mathcal{F} \Rightarrow N_0 \in \mathcal{F} \lor N_1 \in \mathcal{F}$. Clearly, the family of all infinite subsets of ω is a coideal.

Following [27], we say that a coideal F is

- *P*-coideal if, for every decreasing sequence $(A_n)_{n \in \omega}$ in \mathcal{F} there is $B \in \mathcal{F}$ such that $B \setminus A_n$ is finite for each $n \in \omega$;
- *Q*-coideal if, for every $A \in \mathcal{F}$ and every partition $A = \bigcup_{n \in \omega} F_n$ with F_n finite, there is $B \in \mathcal{F}$ such that $B \subseteq A$ and $|B \cap F_n| \leq 1$ for each $n \in \omega$.

We say that a coideal \mathcal{F} is a *T*-coideal if, for every countable group G of permutations of ω and every $M \in \mathcal{F}$ there exists a *G*-thin subset $N \in \mathcal{F}$ such that $N \subseteq M$.

Generalizing the first statement in Theorem 6.2, we get: every P-coideal and every Q-coideal is a T-coideal.

Remark 6.6. We say that $\mathcal{U} \in \omega^*$ is sparse (scattered) if, for every countable group G of permutations of ω , there is sparse (scattered) in (G, w) member of \mathcal{U} . Clearly, T-point \Rightarrow sparse ultrafilter \Rightarrow scattered ultrafilter.

Question 6.5. Does there exist sparse (scattered) ultrafilter in ZFC? Is every weak P-point scattered ultrafilter?

Question 6.6. Let \mathcal{U} be a free ultrafilter on ω such that, for every countable group G of permutations of ω , the orbit $\{g\mathcal{U} : g \in G\}$ is discrete in ω^* . Is \mathcal{U} a weak P-point?

7. The ballean context

Following [21,25], we say that a ball structure is a triple $\mathcal{B} = (X, P, B)$, where X, P are non-empty sets and, for every $x \in X$ and $\alpha \in P, B(x, \alpha)$ is a subset of X which is called a ball of radius α around x. It is supposed that $x \in B(x, \alpha)$ for all $x \in X$ and $\alpha \in P$. The set X is called the support of \mathcal{B}, P is called the set of radii.

Given any $x \in X, A \subseteq X$ and $\alpha \in P$ we set

$$B^*(x,\alpha) = \{y \in X : x \in B(y,\alpha)\}, \ B(A,\alpha) = \bigcup_{a \in A} B(a,\alpha)$$

A ball structure $\mathcal{B} = (X, P, B)$ is called a *ballean* if

• for any $\alpha, \beta \in P$, there exist α', β' such that, for every $x \in X$,

$$B(x, \alpha) \subseteq B^*(x, \alpha'), \ B^*(x, \beta) \subseteq B(x, \beta');$$

• for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that, for every $x \in X$,

$$B(B(x,\alpha),\beta) \subseteq B(x,\gamma);$$

A ballean \mathcal{B} on X can also be determined in terms of entourages of the diagonal of $X \times X$ (in this case it is called a coarse structure [26]) and can be considered as an asymptotic counterpart of a uniform topological space.

Let $\mathcal{B}_1 = (X_1, P_1, B_1), \mathcal{B}_2 = (X_2, P_2, B_2)$ be balleans. A mapping $f : X_1 \to X_2$ is called a \prec -mapping if, for every $\alpha \in P_1$, there exists $\beta \in P_2$ such that, for every $x \in X_1, f(B_1(x, \alpha)) \subseteq B_2(f(x), \beta)$. A bijection $f : X_1 \to X_2$ is called an asymorphism if f and f^{-1} are \prec -mappings.

Every metric space (X, d) defines the metric ballean (X, \mathbb{R}^+, B_d) , where $B_d(x, r) = \{y \in X : d(x, y) \leq r\}$. By [25, Theorem 2.1.1], a ballean (X, P, B) is metrizable (i.e. asymorphic to some metric ballean) if and only if there exists a sequence $(\alpha_n)_{n \in \omega}$ in P such that, for every $\alpha \in P$, one can find $n \in \omega$ such that $B(x, \alpha) \subseteq B(x, \alpha_n)$ for each $x \in X$.

Let G be a group, \mathcal{I} be an ideal in the Boolean algebra \mathcal{P}_G of all subsets of G, i.e. $\emptyset \in \mathcal{I}$ and if $A, B \in \mathcal{I}$ and $A' \subseteq A$ then $A \cup B \in \mathcal{I}$ and $A' \in \mathcal{I}$. An ideal \mathcal{I} is called a *group ideal* if, for all $A, B \in \mathcal{I}$, we have $AB \in \mathcal{I}$ and $A^{-1} \in \mathcal{I}$. For construction of group ideals see [16].

For a G-space X and a group ideal \mathcal{I} on G, we define the ballean $\mathcal{B}(G, X, \mathcal{I})$ as the triple (X, \mathcal{I}, B) where $B(x, A) = Ax \cup \{x\}$. In the case where \mathcal{I} is the ideal of all finite subsets of G, we omit \mathcal{I} and return to the notation B(x, A) used from the very beginning of the paper.

The following couple of theorems from [10, 15] demonstrate the tight interrelations between balleans and G-spaces.

Theorem 7.1. Every ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of the group S_X of all permutations of X and some group ideal \mathcal{I} on G.

Theorem 7.2. Every metrizable ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} on G with countable base such that, for all $x, y \in X$, there is $A \in \mathcal{I}$ such that $y \in Ax$.

A ballean $\mathcal{B} = (X, P, B)$ is called *locally finite (uniformly locally finite)* if each ball $B(x, \alpha)$ is finite (for each $\alpha \in P$, there exists $n \in \mathbb{N}$ such that $|B(x, \alpha)| \leq n$ for every $x \in X$.

Theorem 7.3. Every locally finite ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, \mathcal{I})$ for some subgroup G of S_X and some group ideal \mathcal{I} on G with a base consisting of subsets compact in the topology of pointwise convergence on S_X .

Theorem 7.4. Every uniformly locally finite ballean \mathcal{B} with the support X is asymorphic to the ballean $\mathcal{B}(G, X, [G]^{<\omega})$ for some subgroup G of S_X .

We note that Theorem 7.4 plays the key part in the proof of Theorem 6.1.

For ultrafilters on metric spaces and balleans we address the reader to [12, 20, 24].

References

- T. Banakh, O. Chervak, L. Zdomskyy, On character of points in the Higson corona of a metric space, Comment. Math. Univ. Carolin. 54 (2013), no 2, 159–178.
- [2] T. Banakh, I. Protasov, S. Slobodianiuk, Densities, submeasures and partitions of groups, Algebra Discrete Math. 17 (2014), no 2, 193–221.
- [3] T. Banakh, I. Protasov, S. Slobodianiuk, Scattered subsets of groups, Ukr. Math. J. 67 (2015), 304–312.
- [4] W.W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83(1977), 417-455.
- [5] H. Dales, A. Lau, D. Strauss, Banach Algebras on a Semigroups and Their Compactifications, Mem. Amer. Math. Soc., vol. 2005, 2010.
- [6] M. Filali, I. Protasov, Ultrafilters and Topologies on Groups, Math. Stud. Monogr. Ser., Vol. 13, VNTL Publishers, Lviv, 2011.
- [7] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: Theory and Applications, Walter de Gruyter, Berlin, New York, 1998.
- [8] O. Petrenko, I. Protasov, *Thin ultrafilters*, Notre Dame J. Formal Logic 53 (2012), 79–88.
- [9] O. Petrenko, I. Protasov, Selective and Ramsey ultrafilters on G-spaces, Notre Dame J. Formal Logic (to appear).
- [10] O.V. Petrenko, I.V. Protasov, Balleans and G-spaces, Ukr. Math. J. 64 (2012), 344–350.
- [11] O.V. Petrenko, I.V. Protasov, Balleans and filters, Matem. Stud. 38 (2012), 3–11.
- [12] I. Protasov, Combinatorics of Numbers, Math. Stud. Monogr. Ser, Vol. 2, VNTL Publisher, Lviv, 1997.
- [13] I. Protasov, Coronas of balleans, Topology Appl. 149 (2005), 149–160.
- [14] I. Protasov, Dynamical equivalences on G^* , Topology Appl. 155 (2008), 1394–1402.
- [15] I.V. Protasov, Balleans of bounded geometry and G-spaces, Mat. Stud. 30 (2008), 61–66.
- [16] I. Protasov, Counting Ω -ideals, Algebra Universalis **62** (2010), 339–343.
- [17] I. Protasov, Coronas of ultrametric spaces, Comment. Math. Univ. Carolin. 52 (2011), no 2, 303–307.
- [18] I. Protasov, Ultrafilters and partitions of Abelian groups, Ukr. Math. J. 53 (2011), 99–107.
- [19] I. Protasov, Weak P-points in coronas of G-spaces, Topology Appl. 159 (2012), 587–592.
- [20] I. Protasov, Ultrafilters on metric spaces, Topology Appl. 164 (2014), 207–214.

- [21] I. Protasov, T. Banakh, Ball Structures and Colorings of Graphs and Groups, Math. Stud. Monogr. Ser, Vol. 11, VNTL Publisher, Lviv, 2003.
- [22] I. Protasov, S. Slobodianiuk, Partitions of groups, Math. Stud., 42 (2014), 115–128.
- [23] I. Protasov, S. Slobodianiuk, On the subset combinatorics of G-spaces, Algebra Discrete Math. 17 (2014), 98–109.
- [24] I. Protasov, S. Slobodianiuk, Ultrafilters on balleans, Ukr. Math. J. (to appear).
- [25] I. Protasov, M. Zarichnyi, *General Asymptology*, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007.
- [26] J. Roe, Lectures on Coarse Geometry, Amer. Math. Soc., Providence, R.I. 2003.
- [27] S. Todorcevic, Introduction to Ramsey Spaces, Princeton Univ. Press, 2010.
- [28] Y. Zelenyuk, Ultrafilters and Topologies on Groups, de Grueter, 2012.

CONTACT INFORMATION

O. V. Petrenko,	Department of Cybernetics,
I. V. Protasov	Taras Shevchenko National University,
	Volodymyrs'ka St., 64, 01601 Kyiv, Ukraine
	E-Mail(s): opetrenko72@gmail.com,
	i.v.protasov@gmail.com

Received by the editors: 26.06.2015 and in final form 26.06.2015.