Анотація:
Пусть D — открытый единичный круг в комплексной плоскости. Показано, что всякое инвариантное относительно взвешенных конформных сдвигов подпространство в C(D) содержит радиальную собственную функцию соответствующего инвариантного дифференциального оператора. Эта функция выражается через гипергеометрическую функцию Гаусса и является обобщением сферической функции в круге D, рассматриваемом как гиперболическая плоскость с соответствующей римановой структурой.