In this paper we explore the electrophysical and electroluminescence (EL)
properties of thermally grown 350 nm thick SiO₂ layers co-implanted with Si⁺
and C⁺
ions. The implanting fluencies were chosen in such a way that the peak concentration of
excess Si and C of 5-10 at.% were achieved. Effect of hydrogen plasma treatment on
electroluminescent and durability of SiO₂ (Si,C) - Si-system is studied. Combined
measurements of charge trapping and EL intensity as a function of the injected charge
and current have been carried out with the aim of clarifying the mechanisms of
electroluminescence. EL was demonstrated to have defect-related nature. Cross sections
of both electron traps and hole traps were determined. EL quenching at a great levels of
injected charge is associated with strong negative charge capture, following capture of
positive charge leading to electrical breakdown of SiO₂ structures.