Исследуется динамическая система, состоящая из замкнутой сферической оболочки, заполненной идеальной сжимаемой жидкостью с газовой полостью в центре. Представлена математическая модель системы в безразмерном виде и выполнено ее численное решение. Рассматриваются и анализируются зависимости пульсаций системы от ее линейных размеров и величины введенной энергии.
Досліджується динамічна система, що складається з замкненої сферичної оболонки, яка заповнена ідеальною стисливою рідиною з сферичною газовою порожниною в центрі. Представлена математична модель системи в безрозмірному вигляді і виконано її чисельне розв'язання. Розглядаються та аналізуються залежності пульсацій системи від її лінійних розмірів і величини введеної енергії.
The dynamic system consisting of the closed spherical shell filled with ideal coercible liquid with a spherical gas cavity in the center, is investigated. The mathematical model of the system is presented in a dimensionless form and its numeral solution is carried out. Dependences of the dynamics of system pulsations are considered on its linear sizes and size of the input energy.