Показати простий запис статті
dc.contributor.author |
Стельмах, Я.А. |
|
dc.contributor.author |
Крушинская, Л.А. |
|
dc.contributor.author |
Оранская, Е.И. |
|
dc.date.accessioned |
2016-03-22T06:54:39Z |
|
dc.date.available |
2016-03-22T06:54:39Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Формирование нанокомпозитов Al₂O₃–Сo способом электронно-лучевого испарения в вакууме / Я.А. Стельмах, Л.А. Крушинская, Е.И. Оранская // Современная электрометаллургия. — 2014. — № 3 (116). — С. 26-30. — Бібліогр.: 8 назв. — рос. |
uk_UA |
dc.identifier.issn |
0233-7681 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/96899 |
|
dc.description.abstract |
Приведены результаты исследований структуры и микротвердости толстых (20...60 мкм) керамико-металлических конденсатов Al₂O₃-Co с различной концентрацией металлической добавки (2,5-90 мас.%), полученных способом электронно-лучевого осаждения. Выполненные исследования подтверждают возможность формирования стабильных нанокомпозитов Al₂O₃-Co в интервале температур конденсации 300...950 °С. Обобщены закономерности формирования нанокомпозитов Al₂O₃-Co. Установлено, что размер наночастиц кобальта в керамической матрице в зависимости от температуры конденсации Тп можно варьировать от <4 (Тп < 350 °С) до 20 (Тп ~ 900 °С) нм. Микротвердость HV композитов, полученных при Тп < 350 °С, слабо зависит от содержания металлической фазы и не превышает 5...6ГПа. В интервале температур подложки (350 < Тп < 820) °С микротвердость композитов HV равна примерно 10,5 (17%Сo); 7,5 (60 % Сo); 7,0 (75 % Сo) и 5,0 ГПа (90 % Сo). Композиты, полученные в интервале (820< Тп< 950)°С отличаются развитой межкристаллитной пористостью, их микротвердость составляет примерно 2ГПа. Фазовый состав нанокомпозитов Al₂O₃-Co контролируется температурой подложки Тп и концентрацией кобальта. |
uk_UA |
dc.description.abstract |
The paper presents the results of investigation of structure and microhardness of thick (20...60 μm) Al₂O₃—Co ceramicsmetal condensates with different concentration of metal additive (2.5...90 wt.%) produced by electron beam deposition. Performed investigations confirm the possibility of forming stable Al₂O₃—Co nanocomposites in the range of condensation temperatures of 300...950 °C. Regularities of forming Al₂O₃—Co nanocomposites are generalized. It is established that the size of cobalt nanoparticles in the ceramic matrix can be varied from <4 (Ts < 350 °C) to 20 (Ts ~ 900 °C) nm, depending on condensation temperature Ts. Microhardness HV of composites produced at Ts < 350 °C is weakly dependent on the content of metal phase and does not exceed 5...6 GPa. In the range of substrate temperatures (350 < Ts < 820) °C composite microhardness HV is equal to approximately 10.5 (17 % Co); 7.5 (60 % Co); 7.0 (75 % Co) and 5.0 GPa (90 % Co). Composites produced in the range of (820 < Ts < 950) °C feature ramified intercrystalline porosity, their microhardness being approximately 2 GPa. Phase composition of Al₂O₃—Co nanocomposites is controlled by substrate temperature Ts and cobalt concentration. |
uk_UA |
dc.language.iso |
ru |
uk_UA |
dc.publisher |
Інститут електрозварювання ім. Є.О. Патона НАН України |
uk_UA |
dc.relation.ispartof |
Современная электрометаллургия |
|
dc.subject |
Электронно-лучевые процессы |
uk_UA |
dc.title |
Формирование нанокомпозитов Al₂O₃–Сo способом электронно-лучевого испарения в вакууме |
uk_UA |
dc.title.alternative |
Formation of Al₂O₃–Co nanocomposites by vacuum electron beam evaporation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
dc.identifier.udc |
621.793.1:620.22 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті