Рассмотрены задача оптимизации с дробно-линейной функцией цели на комбинаторной конфигурации размещений и алгоритм решения таких задач на основе теории графов с учетом свойств и структуры множества размещений. Обосновано построение последовательности значений функции–ограничения, разложение точек размещения по подграфам графа согласно координатному методу на примере численного эксперимента.
The problem of optimization with a fractional-linear objective function on a combinatorial configuration placements is examened. The algorithm of solving such problems using graph theory, taking into account the properties and structure of the set of placements is analyzed. Building a sequence of functions-limit’s values, decomposition points of permutations on subgraphs polyhedra according to the coordinate method by the example of numerical experiment is justified.
Розглянуто задачу оптимізації з дробово-лінійною функцією цілі на комбінаторній конфігурації розміщень і алгоритм розв’язування даного типу задач на основі теорії графів з урахуванням властивостей та структури множини розміщень. Обґрунтовано побудову послідовності значень функції–обмеження, розкладання точок розміщення по підграфам графа згідно з координатним методом на прикладі числового експерименту.