Рассмотрен подход, обеспечивающий устойчивое преобразование выхода линейной системы в выход системы с заданным базисом для случая, когда матрица базисных функций исходной линейной системы имеет высокое число обусловленности, и ряд ее сингулярных чисел плавно спадает к нулю. Исследовано поведение зависимости составляющих ошибки преобразования выхода от числа компонент сингулярного разложения.
An approach to a stable transformation of the output of a linear system to the output of a linear system with some particular basis are proposed. The case when the basal function matrix of the linear system output has got the high number of the conditionality and the singular numbers seriesis are fluently reducing to zero is presented. The dependence of the error components vs number of singular value decomposition component is studied.
Розглянуто підхід, що забезпечує стійке перетворення виходу лінійної системи у вихід системи з заданим базисом для випадку, коли матриця базисних функцій вихідної лінійної системи має високе число обумовленості, і низку її сингулярних чисел плавно спадає до нуля. Досліджено поведінку залежності складових помилки перетворення виходу від числа компонент сингулярного розкладання.