Показати простий запис статті
dc.contributor.author |
Кокарев, В.Н. |
|
dc.date.accessioned |
2010-04-06T09:38:25Z |
|
dc.date.available |
2010-04-06T09:38:25Z |
|
dc.date.issued |
2007 |
|
dc.identifier.citation |
О полных выпуклых решениях уравнений, близких к уравнению несобственной аффинной сферы / В.Н. Кокарев // Журн. мат. физики, анализа, геометрии. — 2007. — Т. 3, № 4. — С. 448-467. — Бібліогр.: 13 назв. — рос. |
uk_UA |
dc.identifier.issn |
1812-9471 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/7618 |
|
dc.description.abstract |
Пусть σk - сумма всех главных миноров k-го порядка гессиана (zij) для функции z(x^1,…,x^n). Если функция φ от (n-1)-го положительного переменного принадлежит классу С^3,α, 0 < α < 1, и достаточно близка к тождесвенно единичной функции, то всякое полное выпуклое решение z(x^1,…,x^n) уравнения σn=φ(σ1,...,σn-1) является квадратичным полиномом. |
uk_UA |
dc.description.abstract |
Let σk - the sum of all k-order Hessian principal minors (zij ) for the function z(x^1,…,x^n). If function φ of the (n-1) positive variable belongs to the С^3,α class, 0 < α < 1, and if it is sufficiently close to the identically single function, then any complete convex solution z(x^1,…,x^n) of the equation σn=φ(σ1,...,σn-1) is a quadratic polynomial. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
uk_UA |
dc.title |
О полных выпуклых решениях уравнений, близких к уравнению несобственной аффинной сферы |
uk_UA |
dc.title.alternative |
On Complete Convex Solutions of Equations Similar to the Improper Affine Sphere Equation |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті