Предложена конструкция совершенной схемы множественного разделения секрета, основанная на линейных преобразованиях над кольцом вычетов целых чисел. Установлены необходимые и достаточные условия существования рассматриваемой схемы и описан алгоритм ее построения для произвольной заранее определенной иерархии доступа. Полученные результаты обобщают известные ранее утверждения о свойствах линейных схем разделения секрета над конечными полями, векторными пространствами и кольцами Галуа.
A construction of a perfect multi-secret sharing scheme, which is based on linear transformations over a residue integer ring, is proposed. The necessary and sufficient conditions of the existence of this scheme are established and its construction algorithm for any given access hierarchy are described. The obtained results generalize the known statements about properties of linear secret sharing schemes over finite fields, vector spaces and Galois rings.