An approach for middle- time recognition of epileptic seizures from EEG data is proposed. The method considers sharp changes in the recorded data using geometrical patterns of the signal in phase-space. The approach was developed using experimental clinical EEG data recorded from ten patients and reliably predicted epileptic seizures in the ten-minute interval before the seizure onsets. An estimation of sensitivity and specificity of the proposed method is also provided.
Запропоновано підхід до передбачення епілептичних припадків з ЕЕГ даних на середньотермінових інтервалах. Метод вивчає різкі зміни в отриманих даних використовуючи геометричну картину сигналу в фазовому просторі. Підхід развинено на основі використання реальних клінічних ЕЕГ даних, що записані у десяти пацієнтів, і показано передбачення епілептичних припадків за час до десяти хвилин перед припадком. Запропоновані також оцінки чутливості та особливостей запропонованого підходу.
Предложен подход для предсказания эпилептических припадков из ЭЭГ данных на средневременных интервалах. Метод изучает резкие изменения в полученных данных используя геометрическую картину сигнала в фазовом пространстве. Подход развит на основе использования реальных клинических ЭЭГ данных записанных у десяти пациентов и показал предсказание эпилептических припадков за время до десяти минут перед припадком. Предложены также оценки чувствительности и особенностей предложенного подхода.