Показати простий запис статті
dc.contributor.author |
Kharazishvili, A.B. |
|
dc.date.accessioned |
2009-12-03T16:35:43Z |
|
dc.date.available |
2009-12-03T16:35:43Z |
|
dc.date.issued |
2008 |
|
dc.identifier.citation |
On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space / A.B. Kharazishvili // Theory of Stochastic Processes. — 2008. — Т. 14 (30), № 2. — С. 35–41. — Бібліогр.: 22 назв.— англ. |
en_US |
dc.identifier.issn |
0321-3900 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/4550 |
|
dc.description.abstract |
For some natural classes of topological vector spaces, we show the absolute nonmeasurability of Minkowski’s sum of certain two universal measure zero sets. This result can be considered as a strong form of the classical theorem of Sierpinski [8] stating the existence of two Lebesgue measure zero subsets of the Euclidean space, whose Minkowski’s sum is not Lebesgue measurable. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Інститут математики НАН України |
en_US |
dc.title |
On a bad descriptive structure of Minkowski’s sum of certain small sets in a topological vector space |
en_US |
dc.type |
Article |
en_US |
dc.status |
published earlier |
en_US |
dc.identifier.udc |
519.21 |
|
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті