Побудовано оптимальну за точністю квадратурну формулу обчислення перетворення Фур’є фінітних функцій з інтерполяційного класу Ліпшиця. Розглянуто випадок сильної осциляції підінтегральної функції. Обгрунтування оптимальності базується на використанні методу граничних функцій, а саме побудові чебишовського центру та чебишовського радіусу в області невизначеності розв’язку задачі.
An accuracy-optimal quadrature formula is derived to calculate the Fourier transform of finite functions from an interpolation Lipschitz class. The case of strong oscillation of the subintegral function is considered. The optimality is substantiated based on the boundary function method, namely, constructing the Chebyshev center and Chebyshev radius in the uncertainty domain of the problem solution.