Исследована задача взвешенных наименьших квадратов с положительно-определенными весами M и N для матриц произвольного вида и ранга. Доказаны существование и единственность M-взвешенного решения наименьших квадратов с минимальной N-нормой системы Ax = b.
Досліджено задачу зважених найменших квадратів з додатно-визначеними вагами M та N для матриць довільного вигляду та рангу. Доведено існування та єдиність M-зваженого розв'язку найменших квадратів з мінімальною N-нормою системи Ax = b.
The problem of weighted least squares with positive definite weights M and N for matrices of arbitrary form and rank is analyzed. The existence and uniqueness of the M-weighted least-squares solution with a minimal N-norm of the system Ax = b are proved.