Показати простий запис статті
dc.contributor.author |
Medina-Bárcenas, M. |
|
dc.contributor.author |
Keskin Tütüncü, D. |
|
dc.contributor.author |
Kuratomi, Y. |
|
dc.date.accessioned |
2023-03-14T17:10:39Z |
|
dc.date.available |
2023-03-14T17:10:39Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
A study on dual square free modules / M. Medina-Bárcenas, D. Keskin Tütüncü, Y. Kuratomi // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 267-279. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1512 |
|
dc.identifier.other |
2020 MSC: 16D40, 16D70 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188753 |
|
dc.description.abstract |
Let M be an H-supplemented coatomic module with FIEP. Then we prove that M is dual square free if and only if every maximal submodule ofM is fully invariant. Let M = ⊕ i∈I Mi be a direct sum, such that M is coatomic. Then we prove that M is dual square free if and only if each Mi is dual square free for all i ∈ I and, Mi and ⊕ j̸≠i Mj are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let M be a quasi-projective module. If EndR(M) is right dual square free, then M is dual square free. In addition, if M is finitely generated, then EndR(M) is right dual square free whenever M is dual square free. We give several examples illustrating our hypotheses. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
A study on dual square free modules |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті