Показати простий запис статті
dc.contributor.author |
Hamid, M.F. |
|
dc.date.accessioned |
2023-03-11T16:03:16Z |
|
dc.date.available |
2023-03-11T16:03:16Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1209 |
|
dc.identifier.other |
2020 MSC: 16D50. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188708 |
|
dc.description.abstract |
For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On (co)pure Baer injective modules |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті