Показати простий запис статті

dc.contributor.author Samarakoon, S.T.
dc.date.accessioned 2023-03-05T17:34:30Z
dc.date.available 2023-03-05T17:34:30Z
dc.date.issued 2020
dc.identifier.citation On growth of generalized Grigorchuk's overgroups / S.T. Samarakoon // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 97–117. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other DOI:10.12958/adm1451
dc.identifier.other 2010 MSC: 20E08
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/188556
dc.description.abstract Grigorchuk’s Overgroup Ĝ, is a branch group of intermediate growth. It contains the first Grigorchuk’s torsion group G of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of G. The group G, corresponding to the sequence (012)∞ = 012012 . . ., is a member of the family {Gω|ω ∈ Ω = {0, 1, 2}ᴺ} consisting of groups of intermediate growth when sequence ω is not eventually constant. Following this construction, we define the family { Ĝω, ω ∈ Ω} of generalized overgroups. Then Ĝ = Ĝ (012)∞ and Gω is a subgroup of Ĝω for each ω ∈ Ω. We prove, if ω is eventually constant, then Ĝω is of polynomial growth and if ω is not eventually constant, then Ĝω is of intermediate growth. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title On growth of generalized Grigorchuk's overgroups uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис