Показати простий запис статті

dc.contributor.author Gladki, P.
dc.contributor.author Marshall, M.
dc.date.accessioned 2023-03-05T17:25:07Z
dc.date.available 2023-03-05T17:25:07Z
dc.date.issued 2020
dc.identifier.citation Witt equivalence of function fields of conics / P. Gladki, M. Marshall // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 63–78. — Бібліогр.: 20 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other DOI:10.12958/adm1271
dc.identifier.other 2000 MSC: Primary 11E81, 12J20; Secondary 11E04, 11E12
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/188553
dc.description.abstract Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title Witt equivalence of function fields of conics uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис