Показати простий запис статті
dc.contributor.author |
Bardyla, S. |
|
dc.contributor.author |
Gutik, O. |
|
dc.date.accessioned |
2023-03-05T17:20:25Z |
|
dc.date.available |
2023-03-05T17:20:25Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
On the lattice of weak topologies on the bicyclic monoid with adjoined zero / S. Bardyla, O. Gutik // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 26–43. — Бібліогр.: 30 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1459 |
|
dc.identifier.other |
2010 MSC: 22A15, 06B23 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188551 |
|
dc.description.abstract |
A Hausdorff topology τ on the bicyclic monoid with adjoined zero C⁰ is called weak if it is contained in the coarsest inverse semigroup topology on C⁰. We show that the lattice W of all weak shift-continuous topologies on C⁰ is isomorphic to the lattice SIF¹×SIF¹ where SIF¹ is the set of all shift-invariant filters on ! with an attached element 1 endowed with the following partial order: F ≤ G if and only if G = 1 or F ⊂ G. Also, we investigate cardinal characteristics of the lattice W. In particular, we prove that W contains an antichain of cardinality 2ᶜ and a well-ordered chain of cardinality c. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type t. |
uk_UA |
dc.description.sponsorship |
The work of the author is supported by the Austrian Science Fund FWF (grant I3709 N35). |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
On the lattice of weak topologies on the bicyclic monoid with adjoined zero |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті