Показати простий запис статті
dc.contributor.author |
Kniahina, V.N. |
|
dc.contributor.author |
Monakhov, V.S. |
|
dc.date.accessioned |
2023-03-03T15:51:45Z |
|
dc.date.available |
2023-03-03T15:51:45Z |
|
dc.date.issued |
2020 |
|
dc.identifier.citation |
Finite groups with semi-subnormal Schmidt subgroups / V.N. Kniahina, V.S. Monakhov // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 1. — С. 66–73. — Бібліогр.: 17 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
DOI:10.12958/adm1376 |
|
dc.identifier.other |
2010 MSC: 20E28, 20E32, 20E34 |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188502 |
|
dc.description.abstract |
A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup A of a group G is semi-normal in G if there exists a subgroup B of G such that G = AB and AB1 is a proper subgroup of G for every proper subgroup B1 of B. If A is either subnormal in G or is semi-normal in G, then A is called a semi-subnormal subgroup of G. In this paper, we establish that a group G with semi-subnormal Schmidt {2, 3}-subgroups is 3-soluble. Moreover, if all 5-closed Schmidt {2, 5}-subgroups are semi-subnormal in G, then G is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Finite groups with semi-subnormal Schmidt subgroups |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті