Наукова електронна бібліотека
періодичних видань НАН України

A simplified proof of the reduction point crossing sign formula for Verma modules

Репозиторій DSpace/Manakin

Показати простий запис статті

dc.contributor.author Denis, M.St.
dc.contributor.author Yee, W.L.
dc.date.accessioned 2023-03-02T19:17:03Z
dc.date.available 2023-03-02T19:17:03Z
dc.date.issued 2019
dc.identifier.citation A simplified proof of the reduction point crossing sign formula for Verma modules / M.St. Denis, W.L. Yee // Algebra and Discrete Mathematics. — 2019. — Vol. 28, № 2. — С. 195–202. — Бібліогр.: 7 назв. — англ. uk_UA
dc.identifier.issn 1726-3255
dc.identifier.other 2010 MSC: 22E50, 05E10
dc.identifier.uri http://dspace.nbuv.gov.ua/handle/123456789/188488
dc.description.abstract The Unitary Dual Problem is one of the most important open problems in mathematics: classify the irreducible unitary representations of a group. That is, classify all irreducible representations admitting a definite invariant Hermitian form. Signatures of invariant Hermitian forms on Verma modules are important to finding the unitary dual of a real reductive Lie group. By a philosophy of Vogan introduced in [Vog84], signatures of invariant Hermitian forms on irreducible Verma modules may be computed by varying the highest weight and tracking how signatures change at reducibility points (see [Yee05]). At each reducibility point there is a sign ε governing how the signature changes. A formula for ε was first determined in [Yee05] and simplified in [Yee19]. The proof of the simplification was complicated. We simplify the proof in this note. uk_UA
dc.language.iso en uk_UA
dc.publisher Інститут прикладної математики і механіки НАН України uk_UA
dc.relation.ispartof Algebra and Discrete Mathematics
dc.title A simplified proof of the reduction point crossing sign formula for Verma modules uk_UA
dc.type Article uk_UA
dc.status published earlier uk_UA


Файли у цій статті

Ця стаття з'являється у наступних колекціях

Показати простий запис статті

Пошук


Розширений пошук

Перегляд

Мій обліковий запис