Показати простий запис статті
dc.contributor.author |
Zabavsky, B.V. |
|
dc.date.accessioned |
2023-02-26T12:38:04Z |
|
dc.date.available |
2023-02-26T12:38:04Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Type conditions of stable range for identification of qualitative generalized classes of rings / B.V. Zabavsky // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 144–152 . — Бібліогр.: 6 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC: 13F99, 06F20. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188381 |
|
dc.description.abstract |
This article deals mostly with the following question: when the classical ring of quotients of a commutative ring is a ring of stable range 1? We introduce the concepts of a ring of (von Neumann) regular range 1, a ring of semihereditary range 1, a ring of regular range 1, a semihereditary local ring, a regular local ring. We find relationships between the introduced classes of rings and known ones, in particular, it is established that a commutative indecomposable almost clean ring is a regular local ring. Any commutative ring of idempotent regular range 1 is an almost clean ring. It is shown that any commutative indecomposable almost clean Bezout ring is an Hermite ring, any commutative semihereditary ring is a ring of idempotent regular range 1. The classical ring of quotients of a commutative Bezout ring QCl(R) is a (von Neumann) regular local ring if and only if R is a commutative semihereditary local ring. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Type conditions of stable range for identification of qualitative generalized classes of rings |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті