Показати простий запис статті
dc.contributor.author |
Harmanci, A. |
|
dc.contributor.author |
Ungor, B. |
|
dc.date.accessioned |
2023-02-26T12:20:21Z |
|
dc.date.available |
2023-02-26T12:20:21Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Module decompositions via Rickart modules/ A. Harmanci, B. Ungor // Algebra and Discrete Mathematics. — 2018. — Vol. 26, № 1. — С. 47–64. — Бібліогр.: 15 назв. — англ. |
uk_UA |
dc.identifier.issn |
1726-3255 |
|
dc.identifier.other |
2010 MSC: 16D10, 16D40, 16D80. |
|
dc.identifier.uri |
http://dspace.nbuv.gov.ua/handle/123456789/188373 |
|
dc.description.abstract |
This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module M has decompositions M = Soc(M) ⊕ N and M = Rad(M) ⊕ K where N and K are Rickart if and only if M is Soc(M)-inverse split and Rad(M)-inverse split, respectively. Right Soc(·)-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring R which has a decomposition R = Soc(RR) ⊕ I with I a hereditary Rickart module are obtained. |
uk_UA |
dc.description.sponsorship |
The authors are very thankful to the referee for his/her helpful suggestions to improve the presentation of this paper. |
uk_UA |
dc.language.iso |
en |
uk_UA |
dc.publisher |
Інститут прикладної математики і механіки НАН України |
uk_UA |
dc.relation.ispartof |
Algebra and Discrete Mathematics |
|
dc.title |
Module decompositions via Rickart modules |
uk_UA |
dc.type |
Article |
uk_UA |
dc.status |
published earlier |
uk_UA |
Файли у цій статті
Ця стаття з'являється у наступних колекціях
Показати простий запис статті